Muitas vezes, para localizar um ponto num plano, utilizamos dois números racionais, numa certa ordem.
Denominamos esses números de par ordenado. Exemplos:
Assim:
Indicamos por (x, y) o par ordenado formado pelos elementos x e y, onde x é o 1º elemento e y é o 2º elemento.
|
- Observações
- De um modo geral, sendo x e y dois números racionais quaisquer, temos: . Exemplos
2. Dois pares ordenados (x, y) e (r, s) são iguais somente se x = r e y = s.
Representação gráfica de um Par Ordenado
Podemos representar um par ordenado através de um ponto em um plano.
Esse ponto é chamado de imagem do par ordenado.
Coordenadas Cartesianas
Os números do par ordenados são chamados coordenadas cartesianas. Exemplos:
A (3, 5) ==> 3 e 5 são as coordenadas do ponto A.
Denominamos de abscissa o 1º número do par ordenado, e ordenada, o 2º número desse par. Assim:
Plano Cartesiano
Representamos um par ordenado em um plano cartesiano.
Esse plano é formado por duas retas, x e y,perpendiculares entre si.
A reta horizontal é o eixo das abscissas (eixox).
A reta vertical é o eixo das ordenadas (eixo y).
O ponto comum dessas duas retas é denominado
origem, que corresponde ao par ordenado (0, 0).
|
Localização de um Ponto
Para localizar um ponto num plano cartesiano, utilizamos a seqüência prática:
- O 1º número do par ordenado deve ser localizado no eixo das abscissas.
- O 2º número do par ordenado deve ser localizado no eixo das ordenadas.
- No encontro das perpendiculares aos eixos x e y, por esses pontos, determinamos o ponto procurado. Exemplo:
- Localize o ponto (4, 3).
Produto Cartesiano
Sejam os conjuntos A = {1, 2, 3} e B = {3, 4}.Com auxílio do diagrama de flechas ao lado formaremos o conjunto de todos os pares ordenados em que o 1º elemento pertença ao conjunto A e o 2º pertença ao conjunto B. |
Assim , obtemos o conjunto: {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}
Esse conjunto é denominado produto cartesiano de A por B, e é indicado por:
Logo:
Dados dois conjuntos A e B, não-vazios, denominamos produtos cartesiano A x B o conjunto de todos os pares ordenados (x, y) onde
0 comentários:
Postar um comentário